On the uniqueness of general monosplines of least \(L_ p\)-norm
From MaRDI portal
Publication:1075543
DOI10.1007/BF01893418zbMath0592.41038MaRDI QIDQ1075543
N. Richter-Dyn, Dietrich Braess
Publication date: 1986
Published in: Constructive Approximation (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized monosplines and optimal approximation
- Generalized Gaussian quadrature formulas
- Best approximations by smooth functions
- On monosplines with odd multiplicity of least norm
- A necessary condition for best approximation in monotone and sign- monotone norms
- On the uniqueness of monosplines and perfect splines of least L//1- and L//2-norm
- A second look at approximate quadrature formulae and spline interpolation
- Chebyshev approximation by \(\gamma\)-polynomials. I
- Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation
- Nonuniqueness of best Lp-approximation for generalized convex functions by splines with free knots
- On Multiple Node Gaussian Quadrature Formulae
- Die Eindeutigkeit \(L_2\)-optimaler polynomialer Monosplines