Spectra of algebras of holomorphic functions on infinite dimensional Riemann domains
From MaRDI portal
Publication:1075555
DOI10.1007/BF01450746zbMath0592.46024MaRDI QIDQ1075555
Publication date: 1987
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164201
compact-open topologyenvelope of holomorphyalgebra of all holomorphic functionsbounded complex homomorphismsconnected Riemann domain over a separable Fréchet space with the bounded approximation property
Infinite-dimensional holomorphy (46G20) Banach algebras of differentiable or analytic functions, (H^p)-spaces (46J15) Topological linear spaces of continuous, differentiable or analytic functions (46E10)
Related Items
Invertibility in Fréchet algebras ⋮ Weakly continuous holomorphic functions on pseudoconvex domains in Banach spaces ⋮ Envelopes of holomorphy and extension of functions of bounded type
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Spectrum and envelope of holomorphy for infinite dimensional Riemann domains
- Michael problem and algebras of holomorphic functions
- The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
- A reduction of the continuous homomorphism problem for F-algebras
- Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques
- Prolongement analytique en dimension infinie. (Analytic extension in infinite dimension)
- Über analytische Fortsetzung in Banachräumen
- Holomorphic approximation in infinite-dimensional Riemann domains
- On envelops of holomorphy
- Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
- Approximation of analytic and continuous mappings by polynomials in Fréchet spaces
- Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic
- Locally multiplicatively-convex topological algebras