Maximal regularity for evolution equations by interpolation and extrapolation

From MaRDI portal
Publication:1076320

DOI10.1016/0022-1236(84)90034-XzbMath0593.47041OpenAlexW2012059551MaRDI QIDQ1076320

Pierre Grisvard, Giuseppe Da Prato

Publication date: 1984

Published in: Journal of Functional Analysis (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0022-1236(84)90034-x




Related Items

Linear parabolic differential equations as limits of space-time jump Markov processesHolomorphic semigroups in interpolation and extrapolation spacesPropagation of singularities for integrodifferential equationsSemigroups and nonlinear evolution equationsAnalytic semigroups generated by ultraweak operatorsExtrapolation of operator-valued multiplication operatorsParabolic evolution equations in interpolation and extrapolation spacesOptimal regularity for a class of singular abstract parabolic equationsExistence results for linear evolution equations of parabolic typeGlobal existence of solutions for a strongly coupled quasilinear parabolic systemConvergence of difference schemes for solving nonlinear parabolic equationsUnnamed ItemInterpolation and partial differential equationsIDENTIFICATION OF EXTRAPOLATION SPACES FOR UNBOUNDED OPERATORSIntermediate and extrapolated spaces for bi-continuous operator semigroupsUniversal extrapolation spaces for \(C_0\)-semigroupsSolvability and maximal regularity of parabolic evolution equations with coefficients continuous in timeUnnamed ItemObservation admissibility for bilinear systems controlled by non-bounded operatorsMaximal \(L^p\)-regularity for an abstract evolution equation with applications to closed-loop boundary feedback control problemsSemigroups of operators, cosine operator functions, and linear differential equations``Integrated semigroups and integrated solutions to abstract Cauchy problemsDirect solution of a Riccati equation arising in stochastic control theorySome results on linear stochastic evolution equations in hilbert spaces by the semi–groups methodA Hille-Yosida theorem for a class of weakly \({}^*\) continuous semigroupsDelay differential equations with unbounded operators acting on delay terms



Cites Work