The generalized Dirichlet problem for equations of Monge-Ampère type
From MaRDI portal
Publication:1081747
DOI10.1016/S0294-1449(16)30386-9zbMath0602.35038MaRDI QIDQ1081747
Publication date: 1986
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIHPC_1986__3_3_209_0
Smoothness and regularity of solutions to PDEs (35B65) Nonlinear boundary value problems for linear elliptic equations (35J65)
Related Items
Regularity of almost extremal solutions of Monge–Ampère equations, Fast $L^2$ Optimal Mass Transport via Reduced Basis Methods for the Monge--Ampère Equation, Global Hölder estimates for equations of Monge-Ampère type, Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation, Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature, Global bifurcation and convex solutions for the Monge-Ampère equation, Boundary regularity for solutions of the equation of prescribed Gauss curvature, Regularity of generalized solutions of Monge-Ampère equations
Cites Work
- Über die Differentialgleichung \(rt-s^ 2=f\) und das Weylsche Einbettungsproblem
- The equation of prescribed Gauss curvature without boundary conditions
- Boundary regularity for solutions of the equation of prescribed Gauss curvature
- The Dirichlet problem for the multidimensional Monge-Ampère equation
- The regularity of convex regions with a metric that is regular in the Hölder classes
- On the Dirichlet problem for surfaces of prescribed mean curvature
- Sur les équations de Monge-Ampère. I
- The Dirichlet problem for the equation of prescribed Gauss curvature
- On second derivative estimates for equations of Monge-Ampère type
- Fully Nonlinear, Uniformly Elliptic Equations Under Natural Structure Conditions
- The dirichlet problem for nonlinear second-order elliptic equations I. Monge-ampégre equation
- Classical solutions of fully nonlinear, convex, second-order elliptic equations
- On the regularity of the monge-ampère equation det (∂2 u/∂xi ∂xj) = f(x, u)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item