A lower bound for projection operators on \(L^ 1(-1,1)\)
From MaRDI portal
Publication:1081765
DOI10.1007/BF02384390zbMath0602.41007OpenAlexW1971361937MaRDI QIDQ1081765
Publication date: 1986
Published in: Arkiv för Matematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02384390
algebraic polynomialsBerman- Marcinkiewicz identityFourier-Bessel projectionsKharsiladze-Lozinski theorems
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) (42C10) Approximation by polynomials (41A10)
Related Items (4)
Géza Freud, orthogonal polynomials and Christoffel functions. A case study ⋮ Projecting Lipschitz functions onto spaces of polynomials ⋮ Boun asymptoticds for projection operators on lebesgue spaces ⋮ Polynomial projections in \(C[-1,1\) and \(L^1(-1,1)\) with growth \(n^Y\), \(0<Y\leq 1/2\)]
Cites Work
- The Lebesgue constants for Fourier-Bessel series, mean convergence, and the order of singularity of a Sturm-Liouville equation
- Mean convergence of Lagrange interpolation. I
- Note on mean convergence of Lagrange parabolas
- Minimal projections in \(\mathcal L_1\)-spaces
- Positivity and the convolution structure for Jacobi series
- Summability of Jacobi Series
- The Lebesgue Constants for Jacobi Series, I
- Projections on Invariant Subspaces
- A Convolution Structure for Jacobi Series
- On the Minimal Property of the Fourier Projection
- Mean convergence of orthogonal series and Lagrange interpolation
- Sur l'interpolation (I)
- On the convergence and divergence behaviour of approximation processes in homogeneous Banach spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A lower bound for projection operators on \(L^ 1(-1,1)\)