Propagation de l'analyticité locale pour les solutions de l'équation d'Euler. (Propagation of local analyticity for the solutions of the Euler equation)
From MaRDI portal
Publication:1084983
DOI10.1007/BF00280434zbMath0606.76027MaRDI QIDQ1084983
Publication date: 1986
Published in: Archive for Rational Mechanics and Analysis (Search for Journal in Brave)
Shocks and singularities for hyperbolic equations (35L67) Vortex flows for incompressible inviscid fluids (76B47) Hyperbolic conservation laws (35L65) Pseudodifferential operators and other generalizations of partial differential operators (35S99)
Related Items (11)
Unnamed Item ⋮ Analyticité locale pour les solutions de l'équation d'Euler. (Local analyticity for the solutions of Euler's equation) ⋮ Analyticity and gevrey-class regularity for the second-grade fluid equations ⋮ Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models ⋮ On stationary solutions of two-dimensional Euler equation ⋮ On the analyticity and the almost periodicity of the solution to the Euler equations with non-decaying initial velocity ⋮ On the Lagrangian and Eulerian analyticity for the Euler equations ⋮ Global well-posedness for 3D Navier–Stokes equations with ill-prepared initial data ⋮ Existence and uniqueness of stationary solutions of some reaction–diffusion equations arising in chemical reactor kinetics ⋮ Analytic current-vortex sheets in incompressible magnetohydrodynamics ⋮ Remarks on shear flows of the Euler equations
Cites Work
- Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires
- On classical solutions of the two-dimensional non-stationary Euler equation
- Groups of diffeomorphisms and the motion of an incompressible fluid
- Propagation de l'analyticite des solutions d'equations non–lineaires de type principal
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Propagation de l'analyticité locale pour les solutions de l'équation d'Euler. (Propagation of local analyticity for the solutions of the Euler equation)