Une estimation asymptotique du nombre de solutions approchées d'une équation p-adique. (Asymptotic estimation of the number of approximate solutions of a p-adic equation)
From MaRDI portal
Publication:1085208
DOI10.1007/BF01388790zbMath0607.12008OpenAlexW2091619878MaRDI QIDQ1085208
Publication date: 1986
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143357
Asymptotic results on arithmetic functions (11N37) Equations in general fields (12E12) Local ground fields in algebraic geometry (14G20) Zeta functions and (L)-functions (11S40) Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30)
Related Items (2)
Mixed Łojasiewicz exponents and \(\log\) canonical thresholds of ideals ⋮ Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some local consequences of Hodge theory
- Lectures on forms of higher degree. Notes by S. Raghavan
- Semicontinuity of the singularity spectrum
- Variétés polaires. I: Invariants polaires des singularites d'hypersurfaces
- The complex exponent of a singularity does not change along strata mu=const
- Newton polyhedra and estimation of oscillating integrals
- Stable structures on manifolds. I: Homeomorphismus of \(S^ n\). II: Stable manifolds. III: Applications
- Some Observations on Higher Degree Characters
- Complex powers and asymptotic expansions. I. Functions of certain types.
This page was built for publication: Une estimation asymptotique du nombre de solutions approchées d'une équation p-adique. (Asymptotic estimation of the number of approximate solutions of a p-adic equation)