Enriched locally convex structures, differential calculus and Riesz representation
DOI10.1016/0022-4049(86)90078-2zbMath0608.46045OpenAlexW2069065366MaRDI QIDQ1086473
Publication date: 1986
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(86)90078-2
Riesz representation theoremtopological universeenrichmentexponential lawsderivative complete vector spaces
Projective and injective objects in functional analysis (46M10) Topological linear spaces of continuous, differentiable or analytic functions (46E10) Differentiation theory (Gateaux, Fréchet, etc.) on manifolds (58C20) Derivatives of functions in infinite-dimensional spaces (46G05) Enriched categories (over closed or monoidal categories) (18D20)
Related Items (6)
Cites Work
- Die richtigen Räume für Analysis im Unendlich-Dimensionalen
- A convenient setting for differential calculus
- Riesz-like representation of operators on \(L_ 1 \)by categorical methods
- A cartesian closed category of smooth mappings
- Calculus in vector spaces without norm
- Applications différentiables et variétés différentiables de dimension infinie
- Differentiability of a Function and of its Compositions with Functions of One Variable.
- Analytic functions in topological vector-spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Enriched locally convex structures, differential calculus and Riesz representation