What can lattices do for experimental designs?
DOI10.1016/0165-4896(86)90028-4zbMath0609.62118OpenAlexW2040131513MaRDI QIDQ1086956
Publication date: 1986
Published in: Mathematical Social Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0165-4896(86)90028-4
Möbius functionmodular latticesanalysis of varianceanalysis of comparisonscanonical decomposition of comparatorscommutativity of comparatorsdirect meet representationlabelling processlocally orthogonal designslocally orthogonal partitionspartition sublatticespermutable partitionsprojective intervalquasi complete designsrelative interaction
Design of statistical experiments (62K99) Analysis of variance and covariance (ANOVA) (62J10) Mathematical psychology (91E99) Applications of statistics to psychology (62P15) Distributive lattices (06D99)
Related Items (3)
Cites Work
- Theory of equivalence relations
- The Möbius function of a lattice
- [https://portal.mardi4nfdi.de/wiki/Publication:5731810 On the foundations of combinatorial theory I. Theory of M�bius Functions]
- The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: What can lattices do for experimental designs?