Admissible and minimax estimators of \(\lambda ^ r\) in the gamma distribution with truncated parameter space
From MaRDI portal
Publication:1087266
DOI10.1007/BF01894769zbMath0611.62026MaRDI QIDQ1087266
Publication date: 1986
Published in: Metrika (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/176080
minimaxitygamma distributionnecessary and sufficient conditionPareto distributionsnormaladmissible estimatorslognormalgeneralized gammageneralized Laplacetruncated parameter space
Related Items (4)
Estimating the shape parameter of a Pareto distribution under restrictions ⋮ Admissible and Minimax Estimators of θrwith Truncated Parameter Space Under Squared-Log Error Loss Function ⋮ An admissible estimator for the \(r\)th power of a bounded scale parameter in a subclass of the exponential family under entropy loss function ⋮ Nonexponential Applications of a Global Cramèr-Rao Inequality
Cites Work
- On estimating the variance of a generalized Laplace distribution
- A class of nonlinear admissible estimators in the one-parameter exponential family
- Admissibility of linear estimators in the one parameter exponential family
- Estimation of the reciprocal of scale parameter of a gamma density
- Admissible and Minimax Estimates of Parameters in Truncated Spaces
- Admissibility for Estimation with Quadratic Loss
- Admissible estimators of λ′ in gamma distributtion with quadratic loss
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Admissible and minimax estimators of \(\lambda ^ r\) in the gamma distribution with truncated parameter space