Seul le groupe des similitudes-inversions préserve le type de la loi de Cauchy-conforme de \({\mathbb{R}}^ n\) pour \(n>1\). (Only the group of similitude-inversions preserves the Cauchy-conformal type distributions of \({\mathbb{R}}^ n\) for \(n>1)\)
From MaRDI portal
Publication:1088271
DOI10.1016/0022-1236(86)90056-XzbMath0612.60019MaRDI QIDQ1088271
Publication date: 1986
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Related Items (4)
A characterization of the type of the Cauchy-Hua measure on real symmetric matrices ⋮ Une caractérisation du type de la loi de Cauchy-conforme sur \({\mathbb{R}}^ n\). (A characterization of the type of the conformal Cauchy law on \({\mathbb{R}}^ n)\) ⋮ Some properties of a Cauchy family on the sphere derived from the Möbius transformations ⋮ Towards three-dimensional conformal probability
Cites Work
- An elementary proof of the Knight-Meyer characterization of the Cauchy distribution
- Brownian motions and generalized analytic and inner functions
- A Characterization of the Cauchy Type
- [https://portal.mardi4nfdi.de/wiki/Publication:4124027 Une caract�risation de la loi de Cauchy]
- Which Functions Preserve Cauchy Laws?
- Cauchy-Distributed Functions and a Characterization of the Cauchy Distribution
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Seul le groupe des similitudes-inversions préserve le type de la loi de Cauchy-conforme de \({\mathbb{R}}^ n\) pour \(n>1\). (Only the group of similitude-inversions preserves the Cauchy-conformal type distributions of \({\mathbb{R}}^ n\) for \(n>1)\)