Bi-Hamiltonian structure and invariant endomorphism for rigid body dynamics
DOI10.1007/BF00574155zbMath0612.70014MaRDI QIDQ1088424
Pasquale Di Stasio, Gaetano Vilasi
Publication date: 1986
Published in: Letters in Mathematical Physics (Search for Journal in Brave)
cotangent bundlerotation groupnonlinear evolution equationbi-Hamiltonian structuredegenerate eigenvaluescompletely integrable Hamiltonianfree rigid body dynamicsfree rigid body equationsLagrange-Poisson gyroscopematerial pictureNijenhuis operator
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) Free motion of a rigid body (70E15) Hamilton's equations (70H05) Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests (37J35) Ergodic theorems, spectral theory, Markov operators (37A30) Motion of the gyroscope (70E05)
Cites Work
This page was built for publication: Bi-Hamiltonian structure and invariant endomorphism for rigid body dynamics