Invariants of class \(C^r\) of finite groups generated by reflections and Chevalley's theorem in class \(C^r\)
DOI10.1215/S0012-7094-86-05332-9zbMath0619.20026OpenAlexW1511530040MaRDI QIDQ1089434
Publication date: 1986
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.dmj/1077305190
Weyl groupCartan decompositionadjoint groupinvariant polynomial functionsChevalley Theoreminvariant \(C^ r\)-functionsreal reductive Lie algebra
Group actions on varieties or schemes (quotients) (14L30) (L^p)-spaces and other function spaces on groups, semigroups, etc. (43A15) Differentiable maps on manifolds (58C25) Real-valued functions on manifolds (58C05)
Related Items
Cites Work
- On the \(C^\infty\) Chevalley's theorem
- Differentiability properties of symmetric and isotropic functions
- On the differentiability of O(n) invariant functions of symmetric matrices
- A duality for symmetric spaces with applications to group representations. III: Tangent space analysis
- Singularites \(C^\infty\) en presence de symétrie. En particulier en presence de la symétrie d'un groupe de Lie compact
- Spherical Functions on a Semisimple Lie Group, I
- Sur le théorème de Hilbert différentiable pour les groupes linéaires finis (d'après E. Noether)
- Lie Group Representations on Polynomial Rings
- Orbits and Representations Associated with Symmetric Spaces
- Théorème de Newton pour les fonctions de classe $C^r$
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Invariants of class \(C^r\) of finite groups generated by reflections and Chevalley's theorem in class \(C^r\)