Factorization of operators through \(L_{p\infty}\) or \(L_{p1}\) and non- commutative generalizations
DOI10.1007/BF01450929zbMath0619.47016WikidataQ111444624 ScholiaQ111444624MaRDI QIDQ1089599
Publication date: 1986
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164188
cotypeinterpolation spaces(q,p)-C*-summing operatorsfactorization theorems for bounded linear operators between Banach spacesfactorization theory for C*-algebrasnoncommutative \(L_ p\)-spacesnoncommutative Rosenthal's theorem
Free probability and free operator algebras (46L54) Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators (47A68) Noncommutative probability and statistics (46L53) Noncommutative measure and integration (46L51)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Grothendieck inequality for bilinear forms on \(C^*\)-algebras
- On weakly compact operators on \(C^*\)-algebras
- Applications of the complex interpolation method to a von Neumann algebra: non-commutative \(L^ p\)-spaces
- Some applications of the complex interpolation method to Banach lattices
- Grothendieck's theorem for noncommutative \(C^*\)-algebras, with an appendix on Grothendieck's constants
- On a class of interpolation spaces
- On L(p,q) spaces
- On subspaces of L\(^p\)
- Espaces l p Dans Les Sous-Espaces de L 1
- On the moduli of convexity and smoothness
- Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach
- On a theorem of L. Schwartz and its applications to absolutely summing operators
- Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)