A generalization of the Eckart-Young-Mirsky matrix approximation theorem

From MaRDI portal
Publication:1091453

DOI10.1016/0024-3795(87)90114-5zbMath0623.15020OpenAlexW2058512713MaRDI QIDQ1091453

Gene H. Golub, G. W. Stewart, Alan J. Hoffman

Publication date: 1987

Published in: Linear Algebra and its Applications (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0024-3795(87)90114-5



Related Items

Analysis of the generalized total least squares problem \(AX\approx B\) when some columns of \(A\) are free of error, Voronoi cells of varieties, A Schatten-\(q\) low-rank matrix perturbation analysis via perturbation projection error bound, Distance optimization and the extremal variety of the Grassmann variety, Maximizing bilinear forms subject to linear constraints, Consistent estimation for an errors-in-variables model based on constrained total least squares problems, Critical points of matrix least squares distance functions, Condition numbers of multidimensional mixed least squares-total least squares problems, Multivariate orthogonal regression in astronomy, On the stability of POD basis interpolation on Grassmann manifolds for parametric model order reduction, Schmidt-Mirsky matrix approximation with linearly constrained singular values, On least squares solutions subject to a rank restriction, EIV regression with bounded errors in data: total `least squares' with Chebyshev norm, Rank-constrained optimization and its applications, Exact solutions in low-rank approximation with zeros, Consistency of the total least squares estimator in the linear errors-in-variables regression, Fitting helices to data by total least squares, Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm, Rank constrained matrix best approximation problem, A Gauss-Newton method for mixed least squares-total least squares problems, Consistent estimation with the use of orthogonal projections for a linear regression model with errors in the variables, On generalized matrix approximation problem in the spectral norm, Total least squares problem with the arbitrary unitarily invariant norms, The double mass hierarchy pattern: simultaneously understanding quark and lepton mixing, Sampling minimal subsets with large spans for robust estimation, Eigenvalues of graded matrices and the condition numbers of a multiple eigenvalue, Matrix rigidity, On a general class of matrix nearness problems, The change of similarity invariants under row perturbations, A family of stratified area-minimizing cones, A partial proximal point algorithm for nuclear norm regularized matrix least squares problems, Rank constrained matrix best approximation problem with respect to (skew) Hermitian matrices, Least-squares fitting of circles and ellipses, Hyperspheres and hyperplanes fitted seamlessly by algebraic constrained total least-squares, Minimum rank Hermitian solution to the matrix approximation problem in the spectral norm and its application, Least squares solutions to the rank-constrained matrix approximation problem in the Frobenius norm, Unnamed Item, On perturbations of some constrained subspaces, Structured total least squares and \(L_ 2\) approximation problems, Perturbation theory for the Eckart-Young-Mirsky theorem and the constrained total least squares problem, Estimating the Nonparametric Regression Function by Using Padé Approximation Based on Total Least Squares, Fitting conics of specific types to data, Regularized total least squares based on quadratic eigenvalue problem solvers, A tutorial history of least squares with applications to astronomy and geodesy, Unnamed Item, On a Problem of Weighted Low-Rank Approximation of Matrices, Perturbation analysis and condition numbers of mixed least squares-scaled total least squares problem



Cites Work