On finite dimensional absolute valued algebras satisfying \((x,x,x)=0\)
From MaRDI portal
Publication:1091458
DOI10.1007/BF01200223zbMath0623.17002MaRDI QIDQ1091458
Publication date: 1987
Published in: Archiv der Mathematik (Search for Journal in Brave)
idempotentsCayley algebraflexible algebra4-dimensional absolute valued real algebra8-dimensional absolute valued algebrapara-octonion algebrapara-quaternion algebrapseudo- octonion algebra
Structure theory for nonassociative algebras (17A60) Other nonassociative rings and algebras (17D99) Flexible algebras (17A20)
Related Items (11)
On Finite-Dimensional Absolute-Valued Algebras Satisfying (xp,xq,xr) = 0 ⋮ Third power associative composition algebras ⋮ A note on absolute-valued algebras satisfying (xx2)x = x(x2x) ⋮ On power-associativity of algebras with no nonzero joint divisor of zero and containing a nonzero central idempotent ⋮ Generalization of the Hopf commutative theorem ⋮ Classification of the finite dimensional absolute valued algebras having a non-zero central idempotent or a one-sided unity ⋮ Four-Dimensional Real Third-Power Associative Division Algebras ⋮ On an Ingelstam's Theorem ⋮ Absolute Valued Algebras Having a Local Unit Element ⋮ On absolute-valued algebras satisfying \((x^2,y,x^2)=0\) ⋮ Absolute valued algebras containing a central idempotent
Cites Work
- Unnamed Item
- Unnamed Item
- Quelques résultats sur les algèbres absolument valuees
- Sur les algèbres absolument valuées qui vérifient l'identité \((x,x,x)=0\)
- Algebras with nondegenerate associative symmetric bilinear forms permitting composition
- A Theory of Trace-Admissible Algebras
- Absolute-valued algebraic algebras
- Absolute Valued Algebras
This page was built for publication: On finite dimensional absolute valued algebras satisfying \((x,x,x)=0\)