(F)-spaces and strict (LF)-spaces
DOI10.1007/BF01161761zbMath0628.46001OpenAlexW2008173053MaRDI QIDQ1093131
Publication date: 1987
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/183697
(locally) complete quotient spaces for strict (LF)-spaces and their dualsB- and \(B_ r\)-completenessexistence of certain quotient spaces of some classes of Köthe echelon spacesspace of ultradifferentiable functions and the space of ulradistributions of Beurling are not \(B_ r\)-complete
Sequence spaces (including Köthe sequence spaces) (46A45) Spaces defined by inductive or projective limits (LB, LF, etc.) (46A13) Locally convex Fréchet spaces and (DF)-spaces (46A04) Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.) (46A11) Open mapping and closed graph theorems; completeness (including (B)-, (B_r)-completeness) (46A30) Topological linear spaces of test functions, distributions and ultradistributions (46F05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On \(B_r\)-completeness
- On countable locally convex direct sums
- On weakly complete sets in a locally convex space
- On the space \(\mathcal D(\Omega)\)
- The space of distributions \(D'(\Omega)\) is not \(B_r\)-complete
- Über nicht-vollständige Montelräume
- Absolutely convex sets in barrelled spaces
- Completeness and the open mapping theorem
- Frechet Spaces with Nuclear Kothe Quotients
- Charakterisierung der Unterraüme und Quotienteräume der nuklearen stabilen Potenzreihenraüme von unendlichem Typ
- A Generalized Form of Inductive-Limit Topology for Vector Spaces
- Zur Theorie der Systeme linearer Gleichungen
- Completeness and Compactness in Linear Topological Spaces