Stark's conjecture and Abelian \(L\)-functions with higher order zeros at \(s=0\)
From MaRDI portal
Publication:1094453
DOI10.1016/0001-8708(87)90030-2zbMath0631.12006OpenAlexW1966277934WikidataQ122955290 ScholiaQ122955290MaRDI QIDQ1094453
Publication date: 1987
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0001-8708(87)90030-2
Artin L-functionsStark's conjecturesfunctional propertiesabelian extension of number fieldsBrumer-Stark conjecturesS-genera theory
Related Items
A Stark conjecture ``over \({\mathbb{Z}}\) for abelian \(L\)-functions with multiple zeros ⋮ Numerical Verification of the Stark-Chinburg Conjecture for Some Icosahedral Representations ⋮ Generalized Stark formulae over function fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Two cases of Stark's conjecture
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- On the Stark-Shintani conjecture and cyclotomic \({\mathbb{Z}}_ p\)-extensions of class fields over real quadratic fields
- Values of abelian \(L\)-functions at negative integers over totally real fields
- On the Stickelberger ideal and the circular units of an abelian field
- \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)
- \(L\)-functions at \(s=1\). III: Totally real fields and Hilbert's twelfth problem
- On certain ray class invariants of real quadratic fields
- Über Den Bizyklischen Biquadratischen Zahlkörper
- Galois groups of exponent two and the Brumer-Stark conjecture.
- On the Iwasawa Invariants of Totally Real Number Fields
- On the Class Number of a Relatively Cyclic Number Field