Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces
DOI10.1016/0022-247X(87)90085-0zbMath0633.47032OpenAlexW2060844929MaRDI QIDQ1096159
Publication date: 1987
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-247x(87)90085-0
explicit asymptotic formulaAbelian chiral anomalyfundamental solutions of Dirac operators minimally coupled to finite dimensional matrix-valued gauge potentials on even dimensional Euclidean spacesquantum gauge field theoriesshort distance asymptotic behavior
General theory of partial differential operators (47F05) Constructive quantum field theory (81T08) General mathematical topics and methods in quantum theory (81Q99) Miscellaneous applications of functional analysis (46N99)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Chiral anomalies in even and odd dimensions
- The Chern classes of Sobolev connections
- A proof of the axial anomaly
- Quantum field theory techniques in graphical enumeration
- Dirac operators coupled to vector potentials
- Gauge Invariance and Mass. II
- On Gauge Invariance and Vacuum Polarization
This page was built for publication: Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces