Sur l'invariance topologique de la classe de Godbillon-Vey. (On the topological invariance of the Godbillon-Vey class.)
From MaRDI portal
Publication:1096222
DOI10.5802/aif.1111zbMath0633.58025OpenAlexW2315367087MaRDI QIDQ1096222
Publication date: 1987
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1987__37_4_59_0
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (8)
Almost commensurability of 3-dimensional Anosov flows ⋮ On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows ⋮ On the ergodic theory of free group actions by real-analytic circle diffeomorphisms ⋮ Genus-one Birkhoff sections for geodesic flows ⋮ The Godbillon-Vey invariant and the foliated cobordism group ⋮ Area functionals and Godbillon-Vey cocycles ⋮ PL-representations of Anosov foliations ⋮ Distortion in groups of affine interval exchange transformations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the foliated products of class \(C^ 1\)
- Transitive Anosov flows and pseudo-Anosov maps
- Invariance des classes de Godbillon-Vey par C 1-difféomorphismes. (Invariance of Goodbillon-Vey classes by C 1-diffeomorphisms)
- The Godbillon measure of amenable foliations
- Differentiability of conjugacies between dynamical systems of dimension 1
- Sur un groupe remarquable de difféomorphismes du cercle. (On a remarkable group of the diffeomorphisms of the circle)
- Markov maps associated with Fuchsian groups
- Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. (On smooth conjugacy of diffeomorphisms of the circle with rotations)
- The Gauss-Bonnet theorem and the Atiyah-Patodi-Singer functionals for the characteristic classes of foliations
- Anosov foliations are hyperfinite
- Sur le théorème de Poincaré-Bendixson
- Differentiability, rigidity and Godbillon-Vey classes for Anosov flows
- The vanishing of the homology of certain groups of homeomorphisms
- Flots d'Anosov dont les feuilletages stables sont différentiables
This page was built for publication: Sur l'invariance topologique de la classe de Godbillon-Vey. (On the topological invariance of the Godbillon-Vey class.)