Torsion in \(K_ 2\) of fields

From MaRDI portal
Publication:1097309

DOI10.1007/BF00533985zbMath0635.12015MaRDI QIDQ1097309

Andrei A. Suslin

Publication date: 1987

Published in: \(K\)-Theory (Search for Journal in Brave)




Related Items (66)

The third homology of \(\mathrm{SL}_2(\mathbb{Q})\)Euler cocycle and \(K_ 2\)Galois descent and \(K_ 2\) of number fieldsSOME DIOPHANTINE EQUATIONS OVER AND WITH APPLICATIONS TO OF A FIELDThe group SK 2 of a biquaternion algebraOn Browkin's conjecture about the elements of order five in \(K_2(\mathbb Q)\)Algebraic vs. topological vector bundles on spheresOn the third invariant of a quadratic formA note on Gersten's conjecture for logarithmic Hodge-Witt sheavesChern classes for hermitian L-theroyRost nilpotence and étale motivic cohomologyThe structure of the 2-Sylow subgroup of \(K_ 2({\mathfrak o})\). IIThe Merkuriev--Suslin theorem for any semi-local ringDegree three cohomological invariants of reductive groupsEULER SYSTEMS FOR HILBERT MODULAR SURFACESThe weight two \(K\)-theory of fieldsOn quadratic forms over semilocal ringsThe indecomposable $K_3$ of fieldsRoitman's theorem for singular complex projective surfacesArtin-Verdier duality for arithmetic surfacesOn stably free modules over affine algebrasCup product structure for symplectic K2Milnor-Witt \(K\)-groups of local ringsA Note on Milnor–WittK-Theory and a Theorem of SuslinThe group \(SK_{2}\) of a biquaternion algebraUnramified cohomology and Witt groups of anisotropic Pfister quadricsElements of small orders in \(K_2F\). IIOBSTRUCTIONS TO ALGEBRAIZING TOPOLOGICAL VECTOR BUNDLESGroupe de Chow de codimension deux des variétés définies sur un corps de nombres: Un théorème de finitude pour la torsion. (The codimension two Chow group of varieties defined over a number field: A finiteness theorem for the torsion)Computing generators of the tame kernel of a global function fieldOn torsion in \(K_ 2\) of fieldsApplications of the Bloch-Kato conjecture to cohomological invariants and symbol lengthZero-cycles on singular varieties: Torsion and Bloch's formulaA Bloch-Wigner complex for SL2On the torsion in \(K_2\) of a fieldThe third homology of \(\mathrm{SL}_2\) of fields with discrete valuationThe arithmetic of zero cycles on surfaces with geometric genus and irregularity zero1-Homotopy of Chevalley GroupsMotives of Azumaya algebrasThe Arason invariant and mod 2 algebraic cyclesOn the low-dimensional homology of \(\mathrm{SL}_2(k [t, t^{- 1})\)] ⋮ Cohomology and torsion cycles over the maximal cyclotomic extension\(K_ 2\) of rings of algebraic integersTwo comparison theorems in étale cohomology; applicationsThe Rost nilpotence theorem for geometrically rational surfacesPowers of the fundamental ideal in the Witt ringAn expression for primes and its application to \(K_2\mathbb Q\)On the kernel and the image of the rigid analytic regulator in positive characteristicArithmetic rigidityA new proof of a theorem of SuslinK-theory of discrete valuation ringsWild kernels and divisibility in \(K\)-groups of global fieldsSur la cohomologie non ramifiée en degré trois d'un produitThe second homology of \(\mathrm{SL}_2\) of \(S\)-integersUne remarque sur la cohomologie du faisceau de Zariski de la \(K\)- théorie de Milnor sur une variété lisse complexe. (A remark on the cohomology of the Zariski bundle of the Milnor \(K\)-theory on a complex smooth variety.)The third homology of the special linear group of a fieldDegree four cohomological invariants for quadratic formsMennicke symbols, 𝐾-cohomology and a Bass-Kubota theoremUnramified cohomology of quadrics. II.L'anneau de Milnor d'un corps local à corps résiduel parfaitIndependent generators of the $K$-group of a standard two-dimensional fieldSymplectic \(K_ 2\) of Laurent polynomials, associated Kac-Moody groups and Witt ringsThe Hurewicz homomorphism in algebraic K-theoryKetu and the second invariant of a quadratic spaceA conjecture on a class of elements of finite order in \(K_2F_{\mathfrak p}\)\(K_{2}\) of Kac-Moody groups




This page was built for publication: Torsion in \(K_ 2\) of fields