The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus
From MaRDI portal
Publication:1097576
DOI10.1007/BF00320921zbMath0635.60059MaRDI QIDQ1097576
Publication date: 1988
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
Malliavin calculusItô formulaanticipative processesIto-Vent'tsel-type formulanonmonotonous time scale
Related Items (4)
The doob‐meyer decomposition for anticipating processes ⋮ Filtrage approche et calcul stochastique non causal ⋮ Differentiable measures and the Malliavin calculus ⋮ Stochastic integration with respect to Gaussian processes.
Cites Work
- Lectures on stochastic differential equations and Malliavin calculus
- Generalized stochastic integrals and the Malliavin calculus
- A two-sided stochastic integral and its calculus
- Stochastic calculus with anticipating integrands
- Mécanique aléatoire
- L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel
- Gaussian measures in Banach spaces
- Extension of the ito calculus via the malliavin calculus
- On a Generalization of a Stochastic Integral
- Representation of the distributions on Wiener space and stochastic calculus of variations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus