A method for computing Bessel function integrals
From MaRDI portal
Publication:1098552
DOI10.1016/0021-9991(88)90116-7zbMath0637.65014OpenAlexW2025685502MaRDI QIDQ1098552
Publication date: 1988
Published in: Journal of Computational Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9991(88)90116-7
Chebyshev seriesspherical Bessel functionsBessel function integralsFourier sine or cosine transformLegendre expansion coefficients
Computation of special functions and constants, construction of tables (65D20) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42A38) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10)
Related Items
On the evaluation of infinite integrals involving Bessel functions, Numerical Integration of Highly Oscillating Functions, Fast integration of rapidly oscillatory functions, On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions, Numerical study on integrals involving the product of Bessel functions and a trigonometric function arising in hydrodynamic problems, Numerical quadrature for Bessel transformations, On the implementation of the asymptotic Filon-type method for infinite integrals with oscillatory Bessel kernels, On quadrature of Bessel transformations
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algorithm for the computation of Bessel function integrals
- Simultaneous calculation of Fourier-Bessel transforms up to order N
- Computation of oscillating integrals
- Numerical Fourier and Bessel transforms in logarithmic variables
- An algorithm for the numerical evaluation of the Hankel and Abel transforms
- Numerical evaluation of Hankel transforms via Gaussian-Laguerre polynomial expansions
- Computation of the Hankel transform using projections
- Fast Hankel Transforms Using Related and Lagged Convolutions
- The Optimum Addition of Points to Quadrature Formulae
- An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients
- A Method for Computing Bessel Function Integrals