Lattice gas generalization of the hard hexagon model. III: \(q\)-trinomial coefficients
DOI10.1007/BF01007513zbMath0638.10009OpenAlexW2046421511MaRDI QIDQ1099205
George E. Andrews, Rodney Baxter
Publication date: 1987
Published in: Journal of Statistical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01007513
local densitieshard hexagon modelq-analogs of trinomial coefficientssolvable two-dimensional lattice gas
Combinatorial identities, bijective combinatorics (05A19) (q)-calculus and related topics (05A30) Classical equilibrium statistical mechanics (general) (82B05) Quantum equilibrium statistical mechanics (general) (82B10) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20) Holomorphic modular forms of integral weight (11F11)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities
- Lattice gas generalization of the hard hexagon model. I: Star-triangle relation and local densities
- Lattice gas generalization of the hard hexagon model. II: The local densities as elliptic functions
- Exactly solvable SOS models. Local height probabilities and theta function identities
- q-identities of Auluck, Carlitz, and Rogers
- A Combinatorial Generalization of the Rogers-Ramanujan Identities
- On the Transformation Theory of Basic Hypergeometric Functions
- Further Identities of the Rogers-Ramanujan Type