Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On the demand generated by a smooth and concavifiable preference ordering

From MaRDI portal
Publication:1100069
Jump to:navigation, search

DOI10.1016/0304-4068(87)90006-1zbMath0639.90006OpenAlexW2005239713MaRDI QIDQ1100069

Yakar Kannai, Leonid Hurwicz, James S. Jordan

Publication date: 1987

Published in: Journal of Mathematical Economics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0304-4068(87)90006-1


zbMATH Keywords

consumers' behaviorconcave, twice continuously differentiable utility function


Mathematics Subject Classification ID

Group preferences (91B10)


Related Items (5)

Violation of the law of demand ⋮ Demand properties of concavifiable preferences ⋮ A characterization of monotone individual demand functions ⋮ When is individual demand concavifiable? ⋮ Nice demand and concavifiable smooth preferences: Determinateness of a utility function



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Über konvexe Funktionen mit vorgeschriebenen Niveaumannigfaltigkeiten
  • The ALEP definition of complementarity and least concave utility functions
  • A property of the demand correspondence of a concave utility function
  • A Generalization of the Formula for Computing the Inverse of a Matrix
  • Smooth Preferences


This page was built for publication: On the demand generated by a smooth and concavifiable preference ordering

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1100069&oldid=13135777"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 02:36.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki