Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Cubic fields, a congruential criterion for Scholz's theorem and new real quadratic fields with 3-rank equal to 4

From MaRDI portal
Publication:1101506
Jump to:navigation, search

DOI10.1007/BF01190231zbMath0642.12008MaRDI QIDQ1101506

Francisco Diaz y Diaz, Pascual Llorente, Jordi Quer

Publication date: 1988

Published in: Archiv der Mathematik (Search for Journal in Brave)


zbMATH Keywords

class numberquadratic fieldsdiscriminanttotally real cubic fields


Mathematics Subject Classification ID

Quadratic extensions (11R11) Cubic and quartic extensions (11R16) Iwasawa theory (11R23)




Cites Work

  • Unnamed Item
  • Unnamed Item
  • New types of quadratic fields having three invariants divisible by 3
  • On the 3-Sylow Subgroup of the Class Group of Quadratic Fields
  • Class Groups of the Quadratic Fields Found by F. Diaz y Diaz
  • On Some Families of Imaginary Quadratic Fields
  • Über die Beziehung der Klassenzahlen quadratischer Körper zueinander.
  • On the 3-Rank of Quadratic Fields and the Euler Product
  • Extensions abéliennes non ramifiées de degré premier d'un corps quadratique
  • A quadratic field of prime discriminant requiring three generators for its class group, and related theory


This page was built for publication: Cubic fields, a congruential criterion for Scholz's theorem and new real quadratic fields with 3-rank equal to 4

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1101506&oldid=13134779"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 02:33.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki