Cubic fields, a congruential criterion for Scholz's theorem and new real quadratic fields with 3-rank equal to 4
From MaRDI portal
Publication:1101506
DOI10.1007/BF01190231zbMath0642.12008MaRDI QIDQ1101506
Francisco Diaz y Diaz, Pascual Llorente, Jordi Quer
Publication date: 1988
Published in: Archiv der Mathematik (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- New types of quadratic fields having three invariants divisible by 3
- On the 3-Sylow Subgroup of the Class Group of Quadratic Fields
- Class Groups of the Quadratic Fields Found by F. Diaz y Diaz
- On Some Families of Imaginary Quadratic Fields
- Über die Beziehung der Klassenzahlen quadratischer Körper zueinander.
- On the 3-Rank of Quadratic Fields and the Euler Product
- Extensions abéliennes non ramifiées de degré premier d'un corps quadratique
- A quadratic field of prime discriminant requiring three generators for its class group, and related theory
This page was built for publication: Cubic fields, a congruential criterion for Scholz's theorem and new real quadratic fields with 3-rank equal to 4