Efimov's theorem in dimension greater than two

From MaRDI portal
Publication:1101690

DOI10.1007/BF01389174zbMath0642.53007MaRDI QIDQ1101690

Brian Smyth, Frederico Xavier

Publication date: 1987

Published in: Inventiones Mathematicae (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/143517




Related Items (26)

An extension of Jellett-Liebmann theorem to hypersurfaces in Euclidean spaceHypersurfaces with constant higher order mean curvature in Euclidean spaceComplete negatively curved immersed ends in \(\mathbb {R}^3\)Unnamed ItemComplete surfaces of constant anisotropic mean curvatureOn complete Weingarten hypersurfaces under assumptions on the Gauss-Kronecker curvatureA spectral Bernstein theoremOn complete hypersurfaces with negative Ricci curvature in Euclidean spacesRemarks on hypersurfaces in a unit sphereThe Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space formsOn complete hypersurfaces with constant mean and scalar curvatures in Euclidean spacesA correspondence for isometric immersions into product spaces and its applicationsComplete surfaces with negative extrinsic curvature in \(\mathbb M^2\times\mathbb R\)An estimate for the scalar curvature of constant mean curvature hypersurfaces in space formsComplete submanifolds with relative nullity in space formsSurfaces à courbure extrinsèque négative dans l'espace hyperboliqueRemarks on hypersurfaces with constant higher order mean curvature in Euclidean spaceSubmanifolds with nonpositive extrinsic curvatureAround Efimov's differential test for homeomorphismFinding umbilics on open convex surfacesHeinz type estimates for graphs in Euclidean spaceA short note on a class of Weingarten hypersurfaces in \(\mathbb{R}^{n + 1} \)Curvature estimates for graphs over Riemannian domainsOn the behavior of complete graphs in \({\mathbb{R}^{n+1}}\) with \(L^{p}\)-finite \(r\)-curvatureComplete surfaces with non-positive extrinsic curvature in \(\mathbb{H}^3\) and \(\mathbb{S}^3\)Complete surfaces with ends of non positive curvature



Cites Work


This page was built for publication: Efimov's theorem in dimension greater than two