Locally factorial generic Zariski surfaces are factorial
From MaRDI portal
Publication:1101815
DOI10.1016/0021-8693(87)90221-3zbMath0643.14023OpenAlexW2012958876MaRDI QIDQ1101815
Publication date: 1987
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(87)90221-3
Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal) (14M05) Singularities of surfaces or higher-dimensional varieties (14J17) Special surfaces (14J25)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The divisor classes of the surface \(z^ p=G(x,y)\), a programmable problem
- The divisor class group of the surface \(\exp(p^ n\cdot \log Z)=G(X,Y)\) over fields of characteristic \(p>0\)
- An example related to the affine theorem of Castelnuovo
- Classes de diviseurs et dérivées logarithmiques
- Lectures on unique factorization domains. Notes by M. Pavman Murthy
- [https://portal.mardi4nfdi.de/wiki/Publication:3309993 The Divisor Classes of the Hypersurface z p m = G(x 1 , � ,x n ) in Characteristic p > 0]
This page was built for publication: Locally factorial generic Zariski surfaces are factorial