Cohomologie des variétés de modules de hauteur nulle. (Cohomology of moduli varieties of height zero)
From MaRDI portal
Publication:1102337
DOI10.1007/BF01449215zbMath0644.14005OpenAlexW2012015286MaRDI QIDQ1102337
Publication date: 1988
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164400
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (13)
On the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics ⋮ Helices on some Fano threefolds : constructivity of semiorthogonal bases of $K_0$ ⋮ Localization in quiver moduli spaces ⋮ An \(\mathrm{SL}(3, \mathbb{C})\)-equivariant smooth compactification of moduli space of rational quartic plane curves ⋮ Bundles over Fano threefolds of type \(V_{22}\) ⋮ Bundles over the Fano Threefold V 5 ⋮ Spectral networks with spin ⋮ THE HOMOLOGY GROUPS OF CERTAIN MODULI SPACES OF PLANE SHEAVES ⋮ On the homology of the moduli space of plane sheaves with Hilbert polynomial \(5 m + 3\) ⋮ The Fourier–Mukai transform of a universal family of stable vector bundles ⋮ Chow rings of fine quiver moduli are tautologically presented ⋮ The geometry of the moduli space of one-dimensional sheaves ⋮ Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups.
Cites Work
- Unnamed Item
- Unnamed Item
- On the homology of the Hilbert scheme of points in the plane
- Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur \({\mathbb{P}}_ 2({\mathbb{C}})\)
- On the moduli of vector bundles on an algebraic surface
- Moduli of stable sheaves. II
- Some theorems on actions of algebraic groups
- Fibrés stables et fibrés exceptionnels sur $\mathbb{P}_2$
- Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur P2 ( C ).
- The Yang-Mills equations over Riemann surfaces
This page was built for publication: Cohomologie des variétés de modules de hauteur nulle. (Cohomology of moduli varieties of height zero)