Growth of class numbers in \({\mathbb{Z}}_{\ell}\)-extensions connected with imaginary quadratic fields
From MaRDI portal
Publication:1103672
DOI10.1007/BF01456274zbMath0646.12003MaRDI QIDQ1103672
Publication date: 1988
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164327
Quadratic extensions (11R11) Units and factorization (11R27) Iwasawa theory (11R23) Cyclotomic extensions (11R18)
Related Items
On the anticyclotomic main conjecture for CM fields, An analogue of the Washington-Sinnott theorem for elliptic curves with complex multiplication I
Cites Work
- Unnamed Item
- Unnamed Item
- On the \(\mu\)-invariant of the \(\Gamma\)-transform of a rational function
- Congruences for special values of L-functions of elliptic curves with complex multiplication
- Elliptic units and class groups
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- Ideal class groups in basic \(\mathbb Z_{p_1}\times\dots\times\mathbb Z_{p_s}\)-extensions of abelian number fields
- The non-p-part of the class number in a cyclotomic \(\mathbb{Z}_p\)-extension
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes.
- Groupes d'unités elliptiques
- Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres.
- On the units of algebraic number fields