Iterative behaviour, fixed point of a class of monotone operators. Application to non-symmetric threshold function
From MaRDI portal
Publication:1104051
DOI10.1016/0012-365X(88)90083-0zbMath0646.65050WikidataQ126643389 ScholiaQ126643389MaRDI QIDQ1104051
Souad El Bernoussi, Tao Pham Dinh
Publication date: 1988
Published in: Discrete Mathematics (Search for Journal in Brave)
optimizationconvergencefixed pointmonotone operatorscellular automatasiterative behaviourmultithreshold functionssymmetric threshold functions
Numerical mathematical programming methods (65K05) Convex programming (90C25) Iterative numerical methods for linear systems (65F10)
Related Items (2)
Sequential simulation of parallel iterations and applications ⋮ Numerical solution for optimization over the efficient set by d.c. optimization algorithms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Comportement périodique des fonctions à seuil binaires et applications
- Comportement itératif des fonctions à multiseuil
- The convergence of symmetric threshold automata
- Another Proof that Convex Functions are Locally Lipschitz
- A logical calculus of the ideas immanent in nervous activity
This page was built for publication: Iterative behaviour, fixed point of a class of monotone operators. Application to non-symmetric threshold function