Existence of \(C^{\infty}\) local solutions for the Monge-Ampère equation
From MaRDI portal
Publication:1105115
DOI10.1007/BF01388988zbMath0648.35016OpenAlexW2045939215MaRDI QIDQ1105115
Publication date: 1987
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143497
Related Items
Global Isometric Embedding of Surfaces in $$\mathbb R^3$$ ⋮ Existence of local sufficiently smooth solutions to the complex Monge-Ampère equation ⋮ Local solvability of the \(k\)-Hessian equations ⋮ Existence locale de solutions c∞ pour des equations de monge-ampere changeant de type ⋮ Smooth solutions to a class of mixed type Monge-Ampère equations ⋮ On shock generation for Hamilton-Jacobi equations ⋮ Existence and convexity of local solutions to degenerate Hessian equations ⋮ Gevrey regularity of subelliptic Monge-Ampère equations in the plane ⋮ Smooth local solutions to Weingarten equations and \(\sigma_k\)-equations ⋮ \(C^\infty\) local solutions of elliptical \(2\)-Hessian equation in \(\mathbb{R}^3\) ⋮ Smooth local solutions to degenerate hyperbolic Monge-Ampère equations ⋮ Problème de Dirichlet pour une équation de Monge-Ampère réelle elliptique dégénérée en dimension $n$
Cites Work
- Unnamed Item
- The local isometric embedding in \(R^ 3\) of 2-dimensional Riemannian manifolds with nonnegative curvature
- Surface in \(R^ 3\) with prescribed Gauss curvature
- A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS
- The dirichlet problem for nonlinear second-order elliptic equations I. Monge-ampégre equation
- The local isometric embedding inR3 of two-dimensional riemannian manifolds with gaussian curvature changing sign cleanly
This page was built for publication: Existence of \(C^{\infty}\) local solutions for the Monge-Ampère equation