Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On set-theoretic intersections and connectedness of algebraic varieties in \(\mathbb P^n\)

From MaRDI portal
Publication:1105655
Jump to:navigation, search

DOI10.1007/BF01194099zbMath0649.14026MaRDI QIDQ1105655

Uwe Nagel, Wolfgang Vogel

Publication date: 1987

Published in: Archiv der Mathematik (Search for Journal in Brave)


zbMATH Keywords

connectednessmonomial idealset-theoretical complete intersection


Mathematics Subject Classification ID

Complete intersections (14M10) Connected and locally connected spaces (general aspects) (54D05)


Related Items (2)

On the number of equations defining certain varieties ⋮ A generalization of a lemma by Schmitt and Vogel



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • On the arithmetical rank of monomial ideals
  • Bemerkungen über Zusammenhangseigenschaften und mengentheoretische Darstellung projektiver algebraischer Mannigfaltigkeiten
  • Formale Geometrie und homogene Räume
  • A few remarks on blowing-up and connectedness.
  • Some Algebraic Sets of High Local Cohomological Dimension in Projective Space
  • Complete Intersections and Connectedness
  • Über den arithmetischen Rang quadratfreier Potenzproduktideale
  • On set-theoretic intersections
  • On set-theoretic intersections




This page was built for publication: On set-theoretic intersections and connectedness of algebraic varieties in \(\mathbb P^n\)

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1105655&oldid=13142433"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 01:55.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki