Hölder estimates on domains of complex dimension two and on three- dimensional CR manifolds
DOI10.1016/0001-8708(88)90002-3zbMath0649.35068OpenAlexW2059029256WikidataQ105337177 ScholiaQ105337177MaRDI QIDQ1105780
Charles L. Fefferman, Joseph J. Kohn
Publication date: 1988
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0001-8708(88)90002-3
historyCauchy-Riemann equationsfinite typedomains of finite typesubelliptic estimatestrong pseudoconvexityestimates up to the boundaryreferencessharp Lipschitz estimatesSzegö and Bergman projections
A priori estimates in context of PDEs (35B45) (overlinepartial) and (overlinepartial)-Neumann operators (32W05) Research exposition (monographs, survey articles) pertaining to partial differential equations (35-02) (overlinepartial)-Neumann problems and formal complexes in context of PDEs (35N15)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables
- An example of a smooth linear partial differential equation without solution
- Hölder and \(L^ p\)-estimates for the \({\bar\partial}\)-equation in some convex domains with real-analytic boundary
- Estimates for a class of integral operators and applications to the \({\bar\partial}\)-Neumann-problem
- Balls and metrics defined by vector fields. I: Basic properties
- \(L^ 2\) estimates and existence theorems for the tangential Cauchy-Riemann complex
- Sobolev estimates for the Lewy operator on weakly pseudo-convex boundaries
- Sup-norm estimates for \({\bar\partial}\) in \({\mathbb{C}}^ 2\)
- Sharp Hölder estimates for \({\bar\partial}\) on ellipsoids
- The range of the tangential Cauchy-Riemann operator
- Fundamental solutions for second order subelliptic operators
- Subelliptic estimates for the \({\bar \partial}\)-Neumann problem on pseudoconvex domains
- Estimates for the parametrix of the Kohn Laplacian on certain domains
- Estimates of invariant metrics on pseudoconvex domains of dimension two
- Un example de domaine pseudoconvexe ou l'équation \(\overline\partial u=f\) n'admet pas de solution bornée pour \(f\) bornée
- Fundamental solutions in complex analysis. II. The induced Cauchy Riemann operator
- Hypoelliptic differential operators and nilpotent groups
- Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the \(\overline\partial\) and \(\overline\partial_b\) equations
- The Szegö kernel in terms of Cauchy-Fantappie kernels
- Subelliptic estimates for the \(\bar \partial\)-Neumann problem in C\(^2\)
- Hypoelliptic second order differential equations
- \(L^ 2\) estimates and existence theorems for the \(\partial\)-operator
- On the extension of holomorphic functions from the boundary of a complex manifold
- Harmonic integrals on strongly pseudo-convex manifolds. II
- A pseudo-convex domain not admitting a holomorphic support function
- Boundary behavior of \(\bar \partial\) on weakly pseudo-convex manifolds of dimension two
- Estimates for the Bergman and Szegö kernels in certain weakly pseudoconvex domains
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Necessary and sufficient conditions for solvability of the Lewy equation
- Global Regularity for $\overline \partial$ on Weakly Pseudo-Convex Manifolds
- Non‐coercive boundary value problems
- INTEGRAL REPRESENTATION OF FUNCTIONS IN STRICTLY PSEUDOCONVEX DOMAINS AND APPLICATIONS TO THE $ \overline{\partial}$-PROBLEM
- Hölder and Lp estimates for solutions of ∂u = f in strongly pseudoconvex domains
- EXACT HÖLDER ESTIMATES FOR THE SOLUTIONS OF THE $ \bar\partial$-EQUATION
- A note on the Bergman kernel