Topological invariance of the Witten index
From MaRDI portal
Publication:1105822
DOI10.1016/0022-1236(88)90031-6zbMath0649.47012OpenAlexW2086341126MaRDI QIDQ1105822
Barry Simon, Friedrich Gesztesy
Publication date: 1988
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(88)90031-6
Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) (Semi-) Fredholm operators; index theories (47A53)
Related Items (19)
The jump at zero of the spectral shift function ⋮ The Spectral Shift Function and the Witten Index ⋮ Topological invariance of the homological index ⋮ On \(A\)-integrability of the spectral shift function of unitary operators arising in the Lax-Phillips scattering theory ⋮ On the Witten index in terms of spectral shift functions ⋮ The Witten index and the spectral shift function ⋮ Supersymmetry for chiral symmetric quantum walks ⋮ The Witten index for 1D supersymmetric quantum walks with anisotropic coins ⋮ On the index of a non-Fredholm model operator ⋮ The Witten index for one-dimensional split-step quantum walks under the non-Fredholm condition ⋮ Study of the asymptotic eigenvalue distribution and trace formula of a second order operator-differential equation ⋮ F-theory Yukawa couplings and supersymmetric quantum mechanics ⋮ On asymptotic eigenvalue distribution and trace formula of second order operator-differential equation ⋮ Supersymmetric many-body systems from partial symmetries -- integrability, localization and scrambling ⋮ A Jost-Pais-type reduction of Fredholm determinants and some applications ⋮ The index formula and the spectral shift function for relatively trace class perturbations ⋮ Anomalies of Dirac type operators on Euclidean space ⋮ The two-dimensional magnetic field problem revisited ⋮ On index theory for non-Fredholm operators: A (1 + 1)-dimensional example
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Krein's spectral shift function and Fredholm determinants as efficient methods to study supersymmetric quantum mechanics
- Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics
- Asymptotic behalrior of the scattering phase for exterior domains
This page was built for publication: Topological invariance of the Witten index