Complete Hartogs domains in \({\mathbb{C}}^ 2\) have regular Bergman and Szegö projections
DOI10.1007/BF01214907zbMath0653.32023WikidataQ57376118 ScholiaQ57376118MaRDI QIDQ1107679
Harold P. Boas, Emil J. Straube
Publication date: 1989
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174064
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Continuation of analytic objects in several complex variables (32D15) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Global boundary behavior of holomorphic functions of several complex variables (32E35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Necessary conditions for subellipticity of the \({\bar\partial}\)-Neumann problem
- Irregularity of the Bergman projection on a smooth bounded domain in \({\mathbb{C}}^ 2\)
- Exact regularity of Bergman, Szegö and Sobolev space projections in non pseudoconvex domains
- Uniform approximation of holomorphic functions on bounded Hartogs domains in \({\mathbb{C}}^ 2\)
- On the analyticity of CR mappings
- Variation of the Bergman kernel by cutting a hole
- Proper holomorphic mappings between real-analytic pseudoconvex domains in \({\mathbb{C}}^ n\)
- Exact regularity of the Bergman and the Szegö projections on domains with partially transverse symmetries
- Sur les transformations analytiques des domaines cercles et semicercles bornes
- Regularity of the Bergman projection and local geometry of domains
- Regularity of the Bergman projection in certain non-pseudoconvex domains
- Interpolation Between Sobolev and Between Lipschitz Spaces of Analytic Functions on Starshaped Domains
- The Szego Projection: Sobolev Estimates in Regular Domains
- Small Sets of Infinite Type are Benign for the $\overline\partial$-Neumann Problem
- Classes de Bergman de fonctions harmoniques
- The Neumann Problem for the Cauchy-Riemann Complex. (AM-75)
This page was built for publication: Complete Hartogs domains in \({\mathbb{C}}^ 2\) have regular Bergman and Szegö projections