Schwartz spaces and compact holomorphic mappings
DOI10.1007/BF01161925zbMath0653.46008OpenAlexW181067469MaRDI QIDQ1107788
Publication date: 1988
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/155272
Schwartz spacecompact holomorphic mappingsequicontinuous weak*-null sequence in the dualquasi-normable locally convex space
Geometry and structure of normed linear spaces (46B20) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Spaces defined by inductive or projective limits (LB, LF, etc.) (46A13) Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.) (46A11)
Related Items (1)
Cites Work
- Unnamed Item
- Grothendieck locally convex spaces of continuous vector valued functions
- A characterization of Schwartz spaces
- Weak sequential convergence in the dual of a Banach space does not imply norm convergence
- Continuous convergence on C(X)
- Compact holomorphic mappings on Banach spaces and the approximation property
- Duale Charakterisierungen der Schwartz-Räume. (Dual characterization of Schwartz spaces)
- Characterization of Schwartz Spaces by their Holomorphic Duals
- Einbettbarkeit in den Bidualraum und Darstellbarkeit als projektiver Limes in Kategorien von Limesvektorräumen
- On a Bornological Structure in Infinite-Dimensional Holomorphy
This page was built for publication: Schwartz spaces and compact holomorphic mappings