An elementary proof of the Knight-Meyer characterization of the Cauchy distribution
From MaRDI portal
Publication:1109443
DOI10.1016/0047-259X(87)90076-5zbMath0655.62007OpenAlexW2080528280MaRDI QIDQ1109443
Jean-Louis Dunau, Henri Sénateur
Publication date: 1987
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0047-259x(87)90076-5
Probability distributions: general theory (60E05) Characterization and structure theory of statistical distributions (62E10)
Related Items (4)
Seul le groupe des similitudes-inversions préserve le type de la loi de Cauchy-conforme de \({\mathbb{R}}^ n\) pour \(n>1\). (Only the group of similitude-inversions preserves the Cauchy-conformal type distributions of \({\mathbb{R}}^ n\) for \(n>1)\) ⋮ An extension of Knight's theorem on Cauchy distribution ⋮ A characterization of the type of the Cauchy-Hua measure on real symmetric matrices ⋮ Une caractérisation du type de la loi de Cauchy-conforme sur \({\mathbb{R}}^ n\). (A characterization of the type of the conformal Cauchy law on \({\mathbb{R}}^ n)\)
Cites Work
- Unnamed Item
- A Characterization of the Cauchy Type
- [https://portal.mardi4nfdi.de/wiki/Publication:4124027 Une caract�risation de la loi de Cauchy]
This page was built for publication: An elementary proof of the Knight-Meyer characterization of the Cauchy distribution