Stepsize control for delay differential equations using a pair of formulae
From MaRDI portal
Publication:1109534
DOI10.1016/0377-0427(89)90306-3zbMath0655.65097OpenAlexW2034988462MaRDI QIDQ1109534
Publication date: 1989
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0377-0427(89)90306-3
numerical exampleserror estimatestepsize controlone-step methodsformula-pairlocal approximation error
Nonlinear ordinary differential equations and systems (34A34) Numerical methods for initial value problems involving ordinary differential equations (65L05) Mesh generation, refinement, and adaptive methods for ordinary differential equations (65L50)
Related Items
A mixed finite element for the Stokes problem using quadrilateral elements ⋮ Issues in the numerical solution of evolutionary delay differential equations ⋮ Stepsize control for delay differential equations using continuously imbedded Runge-Kutta methods of Sarafyan ⋮ Software for the numerical solution of systems of functional differential equations with state-dependent delays ⋮ Developing a delay differential equation solver ⋮ An adaptive weak continuous Euler-Maruyama method for stochastic delay differential equations
Cites Work
- Numerical solution of retarded initial value problems: Local and global error and stepsize control
- A type insensitive code for delay differential equations basing on adaptive and explicit Runge-Kutta interpolation methods
- Numerical treatment of delay differential equations by Hermite interpolation
- Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme
- Runge-Kutta triples
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item