The Lê-Ramanujam problem for hypersurfaces with one-dimensional singular sets
From MaRDI portal
Publication:1110689
DOI10.1007/BF01457011zbMath0657.32005MaRDI QIDQ1110689
Publication date: 1988
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164448
Related Items
Uniform stable radius, Lê numbers and topological triviality for line singularities, The Thom condition along a line, The Lê varieties. I, Deformation of polar methods, Unnamed Item, Sur les fibrations de Milnor de familles d'hypersurfaces à lieu singulier de dimension un. (On the Milnor fibrations of families of hypersurfaces with one dimensional critical locus), On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities, The Lê varieties. II, Topologically equisingular deformations of homogeneous hypersurfaces with line singularities are equimultiple, Zariski's multiplicity question and aligned singularities
Cites Work
- Calcul du nombre de cycles evanouissants d'une hypersurface complexe
- Topological stability of smooth mappings
- Sur les fibrations de Milnor de familles d'hypersurfaces à lieu singulier de dimension un. (On the Milnor fibrations of families of hypersurfaces with one dimensional critical locus)
- Stability of \(C^ \infty\) mappings. V: Transversality
- The Invariance of Milnor's Number Implies the Invariance of the Topological Type
- The Invariance of Milnor's Number Implies Topological Triviality
- Singular Points of Complex Hypersurfaces. (AM-61)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item