Une méthode d'approximation mixte des équations des fluides non newtoniens de troisième grade. (A mixed approximation of the equations of non-Newtonian fluids of grade three)
DOI10.1007/BF01404467zbMath0657.76006OpenAlexW33636806MaRDI QIDQ1111404
Vivette Girault, Chérif Amrouche
Publication date: 1988
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/133279
error estimatesexistence of weak solutionsdivergence-free vector fieldsuniqueness conditionsteady state equationsfinite- dimensional approximationsincompressible non-Newtonian fluid of grade threetwo-dimensional domainsweak formuation
Non-Newtonian fluids (76A05) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Partial differential equations of mathematical physics and other areas of application (35Q99)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Error estimates for finite element method solution of the Stokes problem in the primitive variables
- A numerical solution of the Navier-Stokes equations using the finite element technique
- Espaces d'interpolation et théorème de Soboleff
- Error estimates for a mixed finite element approximation of the Stokes equations
- Finite Element Methods for Navier-Stokes Equations
- Thermodynamics and stability of fluids of third grade
This page was built for publication: Une méthode d'approximation mixte des équations des fluides non newtoniens de troisième grade. (A mixed approximation of the equations of non-Newtonian fluids of grade three)