On the uniqueness of embeddings of Verma modules defined by the Shapovalov elements
From MaRDI portal
Publication:1112952
DOI10.1016/0021-8693(88)90049-XzbMath0661.17024OpenAlexW2090074384MaRDI QIDQ1112952
Publication date: 1988
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(88)90049-x
embeddingCoxeter grouphighest weightVerma modulesymmetrizable Kac-Moody Lie algebraShapovalov element
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67)
Cites Work
- Unnamed Item
- Unnamed Item
- Moduln mit einem höchsten Gewicht
- Structure of representations with highest weight of infinite-dimensional Lie algebras
- On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra
- On defining relations of certain infinite-dimensional Lie algebras
- The Jantzen Filtration of a Certain Class of Verma Modules
- Highest Weight Modules Over Graded Lie Algebras: Resolutions, Filtrations and Character Formulas
This page was built for publication: On the uniqueness of embeddings of Verma modules defined by the Shapovalov elements