Harmonic analysis for vector fields on hyperbolic spaces
DOI10.1007/BF01159971zbMath0662.43011MaRDI QIDQ1113416
Erich Badertscher, Hans Martin Reimann
Publication date: 1989
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174102
Plancherel measureinversion formulaPaley-Wiener theoreminvariant differential operatorsvector fieldsspherical systemsJacobi functionsspherical transformHelgason's Fourier transform
Hyperbolic and elliptic geometries (general) and generalizations (51M10) Vector fields, frame fields in differential topology (57R25) Connections of hypergeometric functions with groups and algebras, and related topics (33C80) Geodesics in global differential geometry (53C22) Other transforms and operators of Fourier type (43A32) Harmonic analysis and spherical functions (43A90)
Related Items (5)
Cites Work
- Transformation de Poisson de formes différentielles. Le cas de l'espace hyperbolique. (Poisson transformation of differential forms. The case of hyperbolic space)
- Quasiconformal deformations and mappings in \(\mathbb R^n\)
- Générateurs de l'algèbre ${\cal U}(G)^K$ avec $G=SO(m)$ ou $SO_0(1,m-1)$ et $K=SO(m-1)$
- Invariant operators and integral representations in hyperbolic space.
- Generalization of the Cauchy-Riemann Equations and Representations of the Rotation Group
- The Plancherel formula for the Lorentz group of $n$-th order
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Harmonic analysis for vector fields on hyperbolic spaces