Convolution type estimators for nonparametric regression
From MaRDI portal
Publication:1113583
DOI10.1016/0167-7152(88)90056-9zbMath0662.62039OpenAlexW2071307078MaRDI QIDQ1113583
Publication date: 1988
Published in: Statistics \& Probability Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0167-7152(88)90056-9
order statisticsderivativesconcomitantsPriestley-Chao estimatorasymptotic mean squared errorfixed design regression modelConvolution type kernel estimatorsquotient type Nadaraya-Watson kernel estimatorsrandom design case
Related Items
Growth curves: A two-stage nonparametric approach, A simple ordered data estimator for inverse density weighted expectations, Density adjusted kernel smoothers for random design nonparametric regression, Universal kernel-type estimation of random fields, Universal weighted kernel-type estimators for some class of regression models, Estimation of non-parametric regression for dasometric measures, Triple smoothing estimation of the regression function and its derivatives in nonparametric regression, Localpiecewise linear regression∗, Double smoothing for kernelestimators in nonparametric regression, An efficient integrated nonparametric entropy estimator of serial dependence
Cites Work