On geometric \({\mathbb{Z}}_ p\)-extensions of function fields
From MaRDI portal
Publication:1113949
DOI10.1007/BF01278975zbMath0662.12016OpenAlexW2044744102MaRDI QIDQ1113949
Publication date: 1988
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/155337
Related Items (11)
Class number growth of a family of \(\mathbb{Z}_p\)-extensions over global function fields ⋮ IWASAWA THEORY FORp-TORSION CLASS GROUP SCHEMES IN CHARACTERISTICp ⋮ On \(\mathbb{Z}_{\ell}^d\)-towers of graphs ⋮ Aspects of Iwasawa theory over function fields ⋮ On Geometric Iwasawa Theory and Special Values of Zeta Functions ⋮ \(p\)-adic Wan-Riemann hypothesis for \(\mathbb{Z}_p\)-towers of curves ⋮ On the \(\mu\)-invariants of abelian varieties over function fields of positive characteristic ⋮ Gauss sums for function fields ⋮ Class numbers and \(p\)-ranks in $\mathbb{Z}_p^d$-towers ⋮ Class numbers of cyclotomic function fields ⋮ Genus growth in $\mathbb {Z}_p$-towers of function fields
Cites Work
- Some remarks on the p-rank of an algebraic curve
- Class group rank relations in \(Z_p\)-extensions
- Ambiguous divisor classes in function fields
- On a theorem of M. Deuring and I. R. Šafarevič
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On the theory of congruence function fields
- Zur Geschlechtertheorie in abelschen Zahlkörpern
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On geometric \({\mathbb{Z}}_ p\)-extensions of function fields