A proof of Minkowski's conjecture on the critical determinant of the region \(| x| ^ p+| y| ^ p<1\)
From MaRDI portal
Publication:1114747
DOI10.1007/BF01727646zbMath0663.10033WikidataQ123147047 ScholiaQ123147047MaRDI QIDQ1114747
A. S. Golovanov, A. V. Malyshev, Nikolaj M. Glazunov
Publication date: 1988
Published in: Journal of Soviet Mathematics (Search for Journal in Brave)
Related Items (1)
Cites Work
- Minkowski's conjectures on critical lattices in the metric \((|\xi|^p + |\eta|^p)^{1/p}\)
- Minkowsky's conjecture on the critical determinant
- Lattice Points in the Region |Ax 4 +By 4 | ⩽ 1
- Note on a Conjecture By Minkowski
- Minkowski's Conjectures on the Critical Lattices of the Region |x | p +|y | p ⩽ 1 (I)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A proof of Minkowski's conjecture on the critical determinant of the region \(| x| ^ p+| y| ^ p<1\)