Konvergenzaussagen für Kollokationsverfahren bei elliptischen Randwertaufgaben. (Convergence of the collocation method for elliptic boundary value problems)
From MaRDI portal
Publication:1115163
DOI10.1007/BF01396486zbMath0663.65121OpenAlexW370713456MaRDI QIDQ1115163
Publication date: 1989
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/133337
Spectral, collocation and related methods for boundary value problems involving PDEs (65N35) Boundary value problems for second-order elliptic equations (35J25)
Related Items
Spectral methods with sparse matrices ⋮ Spectral projective Newton-methods for quasilinear elliptic boundary value problems ⋮ Improved Condition Number for Spectral Methods
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Spectral multigrid methods for elliptic equations. II
- Improved spectral multigrid methods for periodic elliptic problems
- Spectral methods for multi-dimensional diffusion problems
- Spectral methods for problems in complex geometries
- Spectral multigrid methods for elliptic equations
- Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren
- Auswertung der Normen von Interpolationsoperatoren
- On Dirichlet's boundary value problem. An \(L^p\)-theory based on a generalization of Garding's inequality
- Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I
- On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations
- Approximation Results for Orthogonal Polynomials in Sobolev Spaces
- Orthogonal Collocation for Elliptic Partial Differential Equations
- On the Lebesgue Function for Polynomial Interpolation
- Boundary Conditions in Chebyshev and Legendre Methods
- On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set
- $L^\infty $-Multivariate Approximation Theory
- $L^2$-Multivariate Approximation Theory
- A method of collocation for integro-differential equations with biharmonic principal part