Relating Kac-Moody, Virasoro and Krichever-Novikov algebras
DOI10.1007/BF01217964zbMath0665.17011MaRDI QIDQ1115955
José Alberty, Anne Taormina, Pierre Van Baal
Publication date: 1988
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Riemann surfaceVirasoro algebraKac-Moody algebraKrichever-Novikov algebrastwo-dimensional conformal field theoriesBogolyubov transformationAffine Lie algebrasstring multiloop amplitudes
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Two-dimensional field theories, conformal field theories, etc. in quantum mechanics (81T40) Compact Riemann surfaces and uniformization (30F10) String and superstring theories; other extended objects (e.g., branes) in quantum field theory (81T30) Infinite-dimensional Lie (super)algebras (17B65)
Related Items
Cites Work
- Quantum field theory, Grassmannians, and algebraic curves
- \(c=I\) conformal field theories on Riemann surfaces
- Virasoro-type algebras, Riemann surfaces and strings in Minkowski space
- Infinite conformal symmetry in two-dimensional quantum field theory
- Unitary representations of some infinite dimensional groups
- Theta functions on Riemann surfaces