Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

PASCAL programs for identification of Lie algebras. II: SPLIT - a program to decompose parameter-free and parameter-dependent Lie algebras into direct sums

From MaRDI portal
Publication:1118017
Jump to:navigation, search


DOI10.1016/0010-4655(87)90006-3zbMath0668.17002OpenAlexW2083943527MaRDI QIDQ1118017

D. W. Rand, Pavel Winternitz, Hans J. Zassenhaus

Publication date: 1987

Published in: Computer Physics Communications (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0010-4655(87)90006-3

zbMATH Keywords

algorithmdecompositionLie algebracomputer algebraJacobson radicaladjoint representationprogram packagePASCAL


Mathematics Subject Classification ID

Structure theory for Lie algebras and superalgebras (17B05) Software, source code, etc. for problems pertaining to nonassociative rings and algebras (17-04)


Related Items

Finding abstract Lie symmetry algebras of differential equations without integrating determining equations, PASCAL programs for identification of Lie algebras. III: Levi decomposition and canonical basis, On the identification of a Lie algebra given by its structure constants. I: Direct decompositions, Levi decompositions, and nilradicals, SPLIT


Uses Software

  • RADICAL


Cites Work

  • Invariants of real low dimension Lie algebras
  • Introduction to Lie Algebras and Representation Theory
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1118017&oldid=13163525"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 03:45.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki