Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time
DOI10.1016/0022-0396(88)90010-1zbMath0668.35084OpenAlexW2053737194MaRDI QIDQ1118106
Publication date: 1988
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-0396(88)90010-1
dampingdispersionnonlinearityenergy dissipationKorteweg-de Vries equationfinite dimensionGram determinantsuniversal attractorspace-periodic solutionsexternal excitationnonlinear group
Asymptotic behavior of solutions to PDEs (35B40) Attractors and repellers of smooth dynamical systems and their topological structure (37C70) Partial differential equations of mathematical physics and other areas of application (35Q99)
Related Items (92)
Cites Work
- Nonlocal models for nonlinear, dispersive waves
- Attractors for damped nonlinear hyperbolic equations
- Sur quelques généralisations de l'équation de Korteweg-de Vries
- Infinite-dimensional dynamical systems in mechanics and physics
- Sur un problème non linéaire
- Attractors representing turbulent flows
- The Korteweg-de Vries equation: a historical essay
- The inverse scattering transform: Semi-infinite interval
- The initial-value problem for the Korteweg-de Vries equation
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time